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Abstract
In this work we show how to define the action of a scalar field such that the
Robin boundary condition is implemented dynamically, i.e. as a consequence
of the stationary action principle. We discuss the quantization of that system
via functional integration. Using this formalism, we derive an expression for
the Casimir energy of a massless scalar field under Robin boundary conditions
on a pair of parallel plates, characterized by constants c1 and c2. Some special
cases are discussed; in particular, we show that for some values of c1 and c2

the Casimir energy as a function of the distance between the plates presents a
minimum. We also discuss the renormalization at one-loop order of the two-
point Green function in the λφ4 theory subject to the Robin boundary condition
on a plate.

PACS numbers: 03.70.+k, 11.10.−z, 11.10.Kk, 11.10.Gh

1. Introduction

The Casimir force between two uncharged macroscopic bodies in vacuum is widely regarded
as arising from the zero-point fluctuations intrinsic to any quantum system. In the case of
two flat parallel plates a distance a apart, that force is proportional to a−4 [1]. In recent years
several groups have performed high-precision measurements of the Casimir force between a
flat plate and a spherical surface (lens) or a sphere [2], and also between two parallel flat plates
[3]. In the latter case the original Casimir formula was confirmed to 15% accuracy.

Due to its fundamental character, the Casimir effect has applications in many areas of
physics, ranging from the theory of elementary particles and interactions [4, 5] to atomic
and molecular physics [6]. It also has analogues in condensed matter physics, for instance
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in fluctuation induced forces [7] and boundary critical phenomena [8]. More recently, its
relevance to the design and operation of micro- and nano-scale electromechanical devices has
been emphasized [9].

Usually details of the interaction between the vacuum fluctuations of the quantum field
and macroscopic bodies are neglected, and replaced by classical boundary conditions (BC) at
the boundary of the latter. While Dirichlet and Neumann BC have been extensively studied in
the past, the more general case of Robin BC has attracted little attention.

A field φ is said to obey the Robin boundary condition at a surface � if its normal
derivative at a point on � is proportional to its value there:

∂

∂n
φ(x) = cφ(x) x ∈ �. (1)

Neumann and Dirichlet boundary conditions are particular cases of the Robin boundary
condition: the first one corresponds to c = 0, while the other is obtained in the limit c → ∞
(assuming that ∂nφ is bounded).

The mixed case of the Dirichlet–Robin (DR) BC was considered in [10] for a 2D massless
scalar field as a phenomenological model for a penetrable surface, with c−1 playing the role
of the finite penetration depth. Recently, the Casimir energy for a scalar field subject to Robin
BC on one or two parallel planes was computed in [11].

Here we also compute the Casimir energy for a scalar field under the Robin BC on two
parallel planes. However, we introduce a rather different approach which seems more amenable
to the eventual computation of radiative corrections in models containing interactions. Its
starting point is the introduction of suitable boundary terms in the action, which allows us
to compute the partition function of the system without the explicit imposition of the Robin
BC on the fields. In spite of that we show that the two-point Green function does satisfy
those boundary conditions. We also find agreement with the main results of [11] for the
Casimir energy, which were computed using the more conventional approach of summing the
zero-point energy of the normal modes of the field. In particular, we show that for the mixed
case of DR boundary conditions the Casimir energy as a function of a develops a minimum,
i.e. there is a configuration of stable equilibrium.

Finally, we study the renormalization at one-loop order of the two-point Green function
in the λφ4 theory subject to the Robin BC on a plate. Our analysis differs from previous ones
[8, 12] in two aspects: (i) we keep c arbitrary, instead of considering only the particular cases
c = 0 or c = ∞, and (ii) we perform the regularization entirely in momentum space. This
procedure avoids dealing with distributions and test functions, which are unavoidable in the
mixed coordinate–momentum space regularization used in [8, 12].

2. The modified action

Let us consider, for simplicity, a real scalar field living in the half-space z � 0,3 satisfying the
(Euclidean) equation of motion

−∂2φ + U ′(φ) = 0 (2)

and subject to the Robin boundary condition at z = 0,

∂zφ − cφ|z=0 = 0. (3)

3 Conventions are: h̄ = c = 1, x = (x, z), where x := (x0, . . . , xd−1), and z := xd .
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(We shall assume that c � 0, in order to avoid the possible appearance of tachyons in the
theory.) One can easily verify that equations (2) and (3) are consequences of the stationary
action principle applied to the Euclidean action

S[φ] =
∫

ddx

{∫ ∞

0
dz

[
1

2
(∂µφ)2 + U(φ)

]
+

1

2
cφ2(x, 0)

}
(4)

where ∫
ddx := lim

β→∞
lim

L→∞

∫ β

0
dx0

∫ L/2

−L/2
dx1 · · ·

∫ L/2

−L/2
dxd−1. (5)

Indeed, computing δS := S[φ + η] − S[φ] up to second order in η we obtain

δS =
∫

ddx

{
(−∂zφ + cφ)η|z=0 +

∫ ∞

0
dz[−∂2φ + U ′(φ)]η

}
+ O(η2) (6)

which implies (2) and (3) if φ is a stationary point of S.
Until now, we have been discussing a classical field. What happens when one quantizes

the theory? In the usual functional integral approach, one has to integrate over all field
configurations obeying certain boundary conditions. If this is the case, is it necessary to
retain the surface term in the action? Bordag et al [13] argue that it is necessary, in order
to ensure the Hermiticity (more precisely, the self-adjointness) of the fluctuation operator
F̂ := −∂2 + U ′′(φc), where φc is the solution to equations (2) and (3). Saharian [14] has also
argued in favour of such a surface term: without it, the vacuum energy evaluated as the sum of
the zero-point energy of each normal mode of the field does not agree with the result obtained
by integrating the vacuum energy density.

Here we propose a different approach. We retain the surface term in the action, but we
shall not impose any boundary condition at z = 0 on the field configurations to be integrated
over. Somewhat surprisingly, if we treat U(φ) as a perturbation, the two-point Green function
of the unperturbed theory does satisfy the Robin BC at z = 0, i.e.,

(∂z − c)〈φ(x)φ(x ′)〉0|z=0 = 0. (7)

Let us prove this. First of all, we write the partition function of the unperturbed
theory as4

Z0 =
∮

[Dφ1]
∫

φ(x,0)=φ1(x)

[Dφ] exp(−S0) (8)

where S0 is given by equation (4) without U(φ). Note that we are integrating over all field
configurations satisfying the boundary condition φ(x, 0) = φ1(x), and then we integrate over
all configurations of the surface field φ1(x). In other words, we integrate over all possible
boundary conditions at z = 0. φ(x, z) also satisfies periodic BC in the x-coordinates, with
period β in the x0-direction and L in the others (note, however, that we have the limits β → ∞
and L → ∞ in mind).

We now decompose φ as a sum of two fields: φ = φ0 + η, where φ0 satisfies

∂2φ0(x) = 0 φ0(x, 0) = φ1(x) φ0(x,∞) = 0. (9)

Note that, because of the boundary conditions imposed on φ0, η vanishes at z = 0 and z = ∞.
Equation (9) can be solved using Fourier transform; the result is

φ0(x, z) =
∫

ddk

(2π)d
eik·xϕ1(k) e−kz (10)

4 We follow here a procedure very similar to that employed in [15] in the context of quantum field theory at finite
temperature.
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where k = |k| and ϕ1(k) is the Fourier transform of φ1(x).
In terms of the fields ϕ1 and η, the partition function Z0 becomes the product of two

independent functional integrals: Z0 = ZAZB , where

ZA =
∫

[Dϕ1] exp

{
−

∫
ddk

(2π)d

1

2
(c + k)ϕ1(k)ϕ1(−k)

}
(11)

ZB =
∫

η(x,0)=0
[Dη] exp

{
−

∫
ddx

∫ ∞

0
dz

1

2
(∂µη)2

}
. (12)

Let us now compute the two-point Green function. As a consequence of the factorization
of Z0, one has 〈φ(x)φ(x ′)〉0 = 〈φ0(x)φ0(x

′)〉A + 〈η(x)η(x ′)〉B . According to equation (11)
we have

〈ϕ1(k)ϕ1(k′)〉A = 1

c + k
δ(d)(k + k′). (13)

Combining this result with equation (10) we obtain

〈φ0(x)φ0(x
′)〉A =

∫
ddk

(2π)d
eik·(x−x′) e−k(z+z′)

c + k
. (14)

On the other hand,

〈η(x)η(x ′)〉B =
∫

ddk

(2π)d
eik·(x−x′)Dη(k; z, z′) (15)

where Dη satisfies(−∂2
z + k2

)
Dη(k; z, z′) = δ(z − z′) Dη(k; 0, z′) = Dη(k;∞, z′) = 0. (16)

One can easily verify that the solution to (16) is given by

Dη(k; z, z′) = 1

k
sinh(kz<) exp(−kz>) (17)

where z< (z>) = min (max){z, z′}. Collecting terms, we finally obtain

〈φ(x)φ(x ′)〉0 =
∫

ddk

(2π)d
eik·(x−x′)

[
e−k(z+z′)

c + k
+

1

k
sinh(kz<) exp(−kz>)

]
. (18)

One can easily verify that 〈φ(x)φ(x ′)〉0 indeed satisfies the Robin BC at z = 0, equation (7).

3. Casimir energy

Let us now apply our procedure to the computation of the Casimir energy of a free massless
scalar field φ subject to the Robin BC on two parallel plates located at the planes z = 0 and
z = a,

∂zφ − c1φ|z=0 = 0 ∂zφ + c2φ|z=a = 0 (c1, c2 � 0). (19)

The Euclidean action for such a system is given by

S =
∫

ddx

{∫ a

0
dz

[
1

2
(∂µφ)2

]
+

1

2
c1φ

2(x, 0) +
1

2
c2φ

2(x, a)

}
(20)

and its partition function is given by

Z =
∮

[Dφ1][Dφ2]
∫ φ(x,a)=φ2(x)

φ(x,0)=φ1(x)

[Dφ] exp(−S). (21)
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The Casimir energy can be extracted from Z using the identity

E0 = − lim
β→∞

1

β
ln Z. (22)

As we did in the previous section, we shall write φ as the sum of two terms: φ = φ0 + η,
where φ0 is the solution to the classical equation of motion, ∂2φ0 = 0, that obeys the boundary
conditions φ0(x, 0) = φ1(x) and φ0(x, a) = φ2(x) (consequently η(x, 0) = η(x, a) = 0). By
Fourier transforming in the x-coordinates one can explicitly solve for φ0, obtaining

φ0(x, z) =
∫

ddk

(2π)d

eik·x

sinh ka
[ϕ1(k) sinh k(a − z) + ϕ2(k) sinh kz] (23)

where k = |k| and ϕj (k) is the Fourier transform of φj (x), j = 1, 2.
Expressing S[φ] in terms of φ0 and η, we obtain S = SA + SB , where

SA =
∫

ddx

{∫ a

0
dz

[
1

2
(∂µφ0)

2

]
+

1

2
c1φ

2
0(x, 0) +

1

2
c2φ

2
0(x, a)

}
(24)

SB =
∫

ddx

∫ a

0
dz

[
1

2
(∂µη)2

]
. (25)

Since φ0 is a functional solely of φ1 and φ2, the partition function Z can be written as the
product of two terms: Z = ZAZB , where

ZA =
∮

[Dφ1][Dφ2] exp(−SA) ZB =
∫ η(x,a)=0

η(x,0)=0
[Dη] exp(−SB). (26)

It follows from equation (22) that the Casimir energy is given by the sum of two terms,
E0 = EA + EB , of which the second one is the Casimir energy of a field subject to Dirichlet
boundary conditions on the plates. Since it is a well known result [16], we shall just quote the
result:

EB(a) = −Ld−1

ad



(
d + 1

2

)
(4π)−(d+1)/2ζ(d + 1). (27)

Let us now compute EA. Inserting (23) into (24) we can rewrite SA in terms of ϕ1

and ϕ2 as

SA = 1

2

∫
ddk

(2π)d
ϕi(k)Mij (k)ϕj (−k) (28)

Mij (k) = (ci + k coth ka)δij − k cosech ka(1 − δij ). (29)

Changing the variables of integration in ZA to ϕj , we obtain

ZA =
∮

[Dϕ1][Dϕ2] exp(−SA[ϕ1, ϕ2]) =
∏

k

det−1/2M(k) (30)

hence

Ebare
A (a) = lim

β→∞
1

2β

∑
k

ln det M(k)

= Ld−1

2

∫
ddk

(2π)d
ln[c1c2 + k2 + (c1 + c2)k coth ka]. (31)

The above expression diverges, and hence requires renormalization. This is achieved by
subtracting from it the quantity

δEA = lim
a→∞ Ebare

A (a) = Ld−1

2

∫
ddk

(2π)d
ln[(c1 + k)(c2 + k)] (32)
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which can be interpreted as part of the self-energy of the plates. (An analogous subtraction
is necessary in the calculation of EB .) Since δEA does not depend on the distance between
the plates, it does not contribute to the force between them. Its subtraction from Ebare

A is thus
permissible as long as one is interested—as we are—only in the Casimir force. The result of
the subtraction is given by

EA(a) = Ld−1

2

∫
ddk

(2π)d
ln

[
1 +

2(c1 + c2)k

(c1 + k)(c2 + k)

1

e2ka − 1

]
. (33)

Performing the angular integration and adding the result to EB , equation (27), we finally obtain
the Casimir energy for the massless scalar field under the Robin boundary conditions:

E0(c1, c2; a) = EB(a) +
Ld−1

(4π)d/2

(

d
2

) ∫ ∞

0
dk kd−1 ln

[
1 +

2(c1 + c2)k

(c1 + k)(c2 + k)

1

e2ka − 1

]
. (34)

As a verification of this result, we note that the integral vanishes if c1 = c2 → ∞
or c1 = c2 = 0, thus reproducing the correct result for Dirichlet–Dirichlet and Neumann–
Neumann boundary conditions. Dirichlet–Neumann boundary conditions (c1 → ∞, c2 = 0)

can also be treated exactly: in this case, the integral in equation (34) becomes

I (a) :=
∫ ∞

0
dk kd−1 ln coth ka. (35)

Integration by parts yields

I (a) = 2a

d

∫ ∞

0
dk

kd

sinh 2ka
= 4a

d

∞∑
n=0

∫ ∞

0
dk kd e−2(2n+1)ka =

(
2 − 1

2d

)

(d)

(2a)d
ζ(d + 1).

(36)

Inserting this result into equation (34) and using the identity 
(2z) = (4π)−1/222z
(z)
(z +
1/2) [18] we finally obtain

E0(∞, 0; a) = Ld−1

ad

(
1 − 1

2d

)



(
d + 1

2

)
(4π)−(d+1)/2ζ(d + 1) (37)

which agrees with the correct result [17], thus giving us another verification of equation (34).
Next (in terms of simplicity) are the following three cases: (i) c1 = c2 = c,

(ii) c1 = ∞, c2 = c and (iii) c1 = 0, c2 = c. We shall denote them by RR, DR and
NR, respectively (R = Robin, D = Dirichlet and N = Neumann). In all these cases, changing
the variable of integration in equation (34) to q = k/c allows us to rewrite it as

Eα
0 (c, a) = Ld−1cdEα(ca) (α = RR, DR, NR) (38)

where

Eα(x) = −

(

d+1
2

)
ζ(d + 1)

(4π)(d+1)/2xd
+

1

(4π)d/2

(

d
2

) ∫ ∞

0
dq qd−1 ln

[
1 +

fα(q)

e2qx − 1

]
(39)

with

fRR(q) = 4q

(1 + q)2
fDR(q) = 2q

1 + q
fNR(q) = 2

1 + q
. (40)

The graphs of Eα(ca) in three spatial dimensions are depicted in figure 1. We can conclude
from it that the Casimir force between the plates is: (i) purely attractive in the RR case (i.e.
c1 = c2 = c); (ii) repulsive at short distances and attractive at long distances in the DR case
and (iii) attractive at short distances and repulsive at long distances in the NR case.
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Figure 1. Eα(ca) (see equation (38)) in three spatial dimensions for α = RR (c1 = c2 = c),

α = DR (c1 = ∞, c2 = c) and α = NR (c1 = 0, c2 = c).

To understand that behaviour, let us consider a free field subject to the Robin BC at z = 0,
i.e. ∂zφ(x, 0) = cφ(x, 0). If we write the z-dependent part of φ as ϕ(z) = sin(kz + δ), the
previous equation becomes tan δ = k/c. It follows that δ → 0 as k → 0, and δ → π/2
as k → ∞. In terms of ϕ(z), this is equivalent to saying that the Robin BC tends to the
Dirichlet BC at low momentum, and to the Neumann BC at high momentum. In the jargon of
renormalization group theory, c = ∞ is an infrared and c = 0 is an ultraviolet attractive fixed
point.

Let us now return to figure 1. According to the above analysis, the RR curve should
behave as the DD curve in the infrared (i.e. a → ∞) and as the NN curve in the ultraviolet
(i.e. a → 0). The Casimir force is purely attractive in both cases, and also in the RR case.
The DR curve should behave as the DD curve as a → ∞, and as the DN curve as a → 0;
indeed, this is what we observe: attraction at long distances and repulsion at short distances.
The analysis of the NR curve is similar.

Such considerations suggest an interesting possibility. Let us suppose that 0 < c1 �
c2 < ∞. Then E0(c1, c2; a) ∼ E0(∞,∞; a) as a → ∞ and E0(c1, c2; a) ∼ E0(0, 0; a) as
a → 0. In both these limits, therefore, the Casimir force is expected to be attractive. However,
since the crossover from a Dirichlet-like to a Neumann-like BC takes place at different scales
for each plate, there could be a range of distances for which one has a Dirichlet-like BC on
one plate and a Neumann-like BC on the other, thus leading to a repulsive force between them.
That such a possibility can indeed occur is shown in figure 2.

4. Interacting field

There is still another reason for the introduction of boundary terms in the action: the
perturbative treatment of a renormalizable interacting theory requires boundary counterterms
in addition to the usual ones [8, 12]. Thus, from a conceptual point of view, it is more natural
to treat boundary conditions as resulting from the interaction of the field with a background
than to impose them a priori. We shall illustrate this point with the calculation of the first
order correction to the two-point Green function of the λφ4 theory in the presence of a flat
boundary, where the field is subject to the Robin BC.
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0.0001
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a

Figure 2. Casimir energy per unit area versus distance between plates (c1 = 1/2, c2 = 2, d = 3).

The renormalized Euclidean Lagrangian density of the theory is given by5

L = 1

2
(∂µφ)2 +

1

2
m2φ2 + cδ(z)φ2 +

λ

4!
φ4 + Lct (41)

with the field φ living in the half-space z � 0. For simplicity, we shall assume m = 0 and
c � 0. Lct contains the renormalization counterterms—the usual ones,

Lct,bulk = δZ

2
(∂µφ)2 +

δm2

2
φ2 +

δλ

4!
φ4 (42)

plus boundary counterterms, which we shall show later.
As we have seen in section 2, the unperturbed two-point Green function (Feynman

propagator) is given by (see equation (18))

G0(x, x ′) := 〈φ(x)φ(x ′)〉0 =
∫

ddk

(2π)d
eik·(x−x′)G0(k; z, z′) (43)

where, in the massless theory,

G0(k; z, z′) = e−k(z+z′)

c + k
+

1

k
sinh(kz<) exp(−kz>). (44)

If we neglect boundary counterterms, the first order correction to G0 is given by

G1(k; z, z′) = −
∫ ∞

0
dw G0(k; z,w)�1(w)G0(k;w, z′) (45)

where the one-loop self-energy, including the mass counterterm, is given by

�1(w) = λ

2

∫
ddq

(2π)d
G0(q;w,w) + δm2

= λ

2

∫
ddq

(2π)d

(
e−2qw

c + q
+

1 − e−2qw

2q

)
+ δm2. (46)

(An ultraviolet cut-off 
 is implicit in the above integral and wherever necessary below.)
To fix δm2 we impose that �1(w) is finite for w > 0 and vanishes for w → ∞ (the latter

5 The factor of 1
2 in the boundary term in the action (4) is due to the fact that

∫ ∞
0 δ(z)f (z) dz = 1

2 f (0).
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condition is equivalent to requiring that the physical mass is zero when one is infinitely far
from the plate). These conditions imply

δm2 = −λ

2

∫
ddq

(2π)d

1

2q
(47)

hence

�1(w) = λ

2

∫
ddq

(2π)d

(
1

c + q
− 1

2q

)
e−2qw. (48)

Although �1(w) is now a well defined function of w for w > 0, this is not enough to
ensure the finiteness of G1. Indeed, �1(w) ∼ w−(d−1) for w → 0, causing the divergence of
the integral in equation (45) for d � 2. This problem can be (partially) solved by the boundary
counterterm

L(1)
ct, boundary = δcδ(z)φ2. (49)

It adds a new term to the self-energy �1(w), turning it into �̃1(w) = �1(w) + 2δcδ(w).
Equation (45) then gets replaced by

G1(k; z, z′) = −
∫ ∞

0
dw G0(k; z,w)�1(w)G0(k;w, z′) − δcG0(k; z, 0)G0(k; 0, z′). (50)

Let us assume that 0 < z < z′; then equation (50) yields

G1(k; z, z′) = −δc
e−k(z+z′)

(c + k)2
− λ

2

∫
ddq

(2π)d

(
1

c + q
− 1

2q

)
[I (0, z) + I (z, z′) + I (z′,∞)]

(51)

where

I (a, b) :=
∫ b

a

dw e−2qwG0(k; z,w)G0(k;w, z′). (52)

Since we are interested in the large-q behaviour of the integrand, we restrict our attention
to I (0, z)—I (z, z′) and I (z′,∞) are exponentially suppressed in that limit. Performing the
integration, we obtain

I (0, z) = e−k(z+z′)
∫ z

0
dw e−2qw

[
e−kw

c + k
+

1

k
sinh(kw)

]2

q→∞∼ e−k(z+z′)

(c + k)2

[
1

2q
+

c

2q2
+ O

(
1

q3

)]
. (53)

If we further multiply this result by the term in parentheses in equation (51), we conclude that
the integrand in that equation behaves for large q as

e−k(z+z′)

(c + k)2

[
1

4q2
− c

4q3
+ O

(
1

q4

)]
q→∞∼ e−k(z+z′)

(c + k)2

[
1

4q(q + c)
+ O

(
1

q4

)]
. (54)

Therefore, if we choose

δc = −λ

8

∫
ddq

(2π)d

1

q(q + c)
+ δc (55)

with δc finite, G1(k; z, z′) becomes finite for d < 4.



7048 L C de Albuquerque and R M Cavalcanti

To see why the boundary counterterm (49) only solves the problem partially, let us take
z = z′ = 0 in equation (50). A straightforward calculation then shows that

G1(k; 0, 0) = − 1

(c + k)2

[
δc +

λ

2

∫
ddq

(2π)d

(
1

c + q
− 1

2q

)
1

2(q + k)

]
= − δc

(c + k)2
+

λ

8(c + k)

∫
ddq

(2π)d

1

q(q + c)(q + k)
. (56)

The result is finite for d = 2, but diverges for d = 3. In this case, another boundary
counterterm is needed. As we show below, it is given by

L(2)
ct, boundary = δbδ(z)φ(∂n − c)φ (57)

with ∂n the interior normal derivative (in our case, ∂n = ∂z). Indeed, such a counterterm gives
rise to an extra contribution to G1(k; 0, 0), given by

�G1(k; 0, 0) = −δb

∫ ∞

0
dw δ(w)(∂w − 2c)G2

0(k; 0, w)

= −δb

∫ ∞

0
dw δ(w)(∂w − 2c)

e−2kw

(c + k)2

= δb

c + k
. (58)

If we choose

δb = −λ

8

∫
ddq

(2π)d

1

q2(q + c)
+ δb (59)

with δb finite, we cancel the divergence in G1(k; 0, 0) for d = 3. Indeed

G1(k; 0, 0) + �G1(k; 0, 0) = 1

c + k

[
δb − δc

c + k
− λk

8

∫
ddq

(2π)d

1

q2(q + c)(q + k)

]
= 1

c + k

[
δb − δc

c + k
+

λ

16π2

k

c − k
ln

(
k

c

)]
(d = 3). (60)

The boundary counterterm (57) is ineffective if z, z′ > 0; in this case, �G1(k; z, z′) is
identically zero. (As a consequence, G1(k; z, z′) is insensitive to the choice of δb if z, z′ > 0.)
On the other hand, that counterterm is necessary if z = 0 and z′ > 0 (or vice versa); in this
case, it is possible to show that the same choice (59) for δb also ensures the finiteness of
G1(k; z, z′).

In order to fix the finite part of the boundary counterterms, δb and δc, one has to impose
a pair of renormalization conditions. A natural choice, for it is motivated by the form of G0,
is given by

G(κ; 0, 0) = (c + κ)−1 (61)

d

dk
G(k; 0, 0)|k=κ = −(c + κ)−2 (62)

where κ is an arbitrary, but nonzero, mass scale.
We end this section with some remarks:

(A) Because of the boundary counterterms, the renormalized two-point Green function does
not satisfy the Robin BC at z = 0—except for c → ∞ (Dirichlet BC); in this case, the
boundary condition is preserved at each order in the perturbation theory [12].

(B) Inclusion of another plate at z = a does not significantly affect the overall scenario.
New ultraviolet divergences arise, but the theory is made finite with the same type of
counterterms used in the case of a single plate.
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5. Conclusions

In this work we have computed the Casimir energy of a free massless scalar field subject to
independent Robin boundary conditions on two parallel plates in d spatial dimensions. It was
shown that for mixed Dirichlet–Robin BC the Casimir energy as a function of the distance
a between the plates displays a minimum. We managed to understand the behaviour of the
Casimir energy as a function of c relying on an analogy with the renormalization group flows
expected from infrared/ultraviolet fixed points. It was found that the Dirichlet BC (c → ∞)

is analogous to an attractive infrared fixed point whereas the Neumann BC (c = 0) resembles
an attractive ultraviolet fixed point. This interpretation is consistent with the numerical results
shown in figure 1 for the Casimir energy as a function of ca, and suggests that a crossover from
Dirichlet-like to Neumann-like behaviour at the plates may lead to a repulsive force between
them.

We also provided a detailed analysis of renormalization for the two-point Green function
G(x, x ′) at first order in λ in the λφ4 theory. For simplicity we worked out the case of the
Robin BC at a single flat boundary. We have shown that, in addition to the usual ‘bulk’
counterterms, one boundary counterterm is necessary to render G finite in the bulk, and a
second one is necessary if at least one of its arguments lies on the boundary. This analysis is
a necessary step in the computation of radiative corrections to the Casimir energy, which we
intend to present elsewhere.

In view of the widespread interest in the Casimir effect and its possible technological
applications it is worthwhile to seek alternative computational tools which may go beyond or
complement the existing ones. For instance, in [19] a resummation scheme to compute
the leading radiative corrections to the Casimir energy was suggested. On the other
hand, the method outlined in the present work seems well suited to the computation
of radiative corrections either in a perturbative setting or eventually via application of
semiclassical methods. Its starting point is the indirect implementation of the BC by
means of appropriate terms in the action functional, which is then re-expressed in terms
of two kinds of fields: a field η(x, z) satisfying the Dirichlet BC on the surfaces, and two
surface fields φj (x) localized on the planes, depending only on the remaining d transverse
coordinates. The advantage of this procedure is that the functional integration over the surface
fields is unconstrained, i.e. one does not have to enforce explicitly the Robin BC on the
fields.

The implementation of BC via local terms in the action is usually employed in studies
of boundary critical phenomena [8]. In that context, it can be shown that the Dirichlet
and Neumann BC correspond to the so-called ordinary (c → ∞) and special transitions
(c = 0), respectively. The Robin BC is relevant in the study of the crossover between those
universality classes, for which, however, the computations become much more involved. It is
also relevant for the analysis of the ordinary transition; in this case, however, one may resort
to an expansion in powers of c−1 [8]. We expect that the methods proposed here can be useful
for the study of the crossover for the relevant case of two flat planes. This is presently under
investigation.
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